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1 Introduction

Solving mathematical world problems (MWP) is an important NLP task that has interested researchers
since the 1960s. The goal is to develop models which take the text of a world problem as input
and produce a numerical answer as output. Such models must be capable of both natural language
understanding and mathematical reasoning. Solving MWPs has been a difficult task for a three
reasons. First, there is a conceptual gap between the natural language form of the MWP and its
corresponding mathematical equation. Second, MWPs can test a student’s ability in a diverse set of
concepts. Third, effectively representing the structure present in mathematical expressions is difficult.

Typically, MWPs are formulated as text with the problem description, a mathematical solution
equation and the final answer based on evaluating this expression. As a simple example, consider
Table 1. Here the model must: 1) understand what is meant by words such as length, width and
shorter and 2) infer the correct equation to compute the final answer of 10.

Problem: The length of Bob’s backyard is 5ft. The width is 2ft shorter than the length.
What is the area of Bob’s backyard?
Mathematical Equation: 5× (5− 3)
Answer: 10

Table 1: Sample MWP

Modern approaches to solving MWPs typically fall into 2 categories: top down and bottom up. Top
down approaches involve constructing goal vectors, and decomposing the problem into sub-goals,
where each sub-goal becomes either an operation or a number. A bottom up approach involves
constructing small expressions, and combining useful expressions until the final solution expression
is generated. However, these approaches fail to emulate human-like problem solving, which is often a
combination of top down and bottom up processing. In this work, we present a novel hybrid top-down
and bottom-up approach to solving MWPs.

We conduct experiments on Math23K, a Chinese MWP dataset with 23161 samples, and evaluate
the performance according to equation accuracy, which measures if predicted and the ground-
truth equations match, and answer accuracy, which directly measures if the predicted and ground-
truth solutions match. Our experiments demonstrate that the hybrid model achieves slightly better
performance compared to existing state of the art.

∗Department of Statistics and Data Science
†Department of Electrical and Computer Engineering

Spring 2022: CMU 10-707 Project



2 Background

In order to evaluate the performance of our approach, we pick GTS as a baseline. GTS is a the
simplest top-down model for solving MWPs. It uses a 2-layer Bidirectional GRU-based RNN as the
problem encoder. The decoder involves recursively decoding a goal vector into tokens, and computing
sub-goals if the token is an operator, until all decoded tokens are numbers. This process can be
visualized in 1. Although there several models that have outperformed GTS since, we chose GTS as
a baseline as many subsequent models are extensions of it. After performing 5-fold cross-validation
on Math23k, GTS achieves a final test equation accuracy of 65.3, and an answer accuracy of 74.3.

Figure 1: Expression tree from [1]

3 Related Work

3.1 Initial Approaches to MWPs

The initial methods for solving MWPs were rule-based approaches [2, 3], which use hand-crafted
features to map problems to a fixed set of equation templates. Soon after, semantic parsing [4, 5] and
statistical machine learning approaches [6, 7] became popular.

3.2 Neural Network Approaches to MWPs

Recently, deep neural networks have been shown to outperform all of these classical methods. In
[8], the authors trained a deep seq2seq model to solve MWPs. The key feature of this model in an
encoder-decoder framework, where the encoder maps the problem text to a hidden state and then the
decoder maps the hidden state to a mathematical equation. Soon after, [9] improved the decoder so it
produces an expression tree rather than a sequence. The final answer can be computed from the tree
with postfix traversal. The use of trees normalizes the output, avoiding degradation in performance
due to non-uniqueness of equations. [1] introduced GTS, which is discussed in Section 2. [10], [11]
and [12] all have decoders that are top-down goal driven based, primarily inspired by GTS. [13] and
[14] both use graphs to represent the relationships between words, quantities, and other quantities
as the problem encoder, while maintaining a top-down decoding process. Alternatively, [15] solves
MWPs in a bottom up process, building up likely expression trees until the final solution tree is
reached. Finally, there has been success in fine tuning pre-trained language models, such as GPT-3,
as in [16].

3.3 Top-Down Bottom-Up Processing

There have been several machine learning based models that have been similarly inspired by the
top-down bottom-up nature of neural processing. In [17], the authors demonstrate that a combined
top-down and bottom-up approach to single figure image segmentation outperform pure top-down and
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pure bottom-up approaches. [18] explores RNN architectures that dynamically combine top-down
and bottom-up signals using attention. Finally, [19] fuse a separate bottom-up and top-down neural
networks for visual object recognition.

4 Methods

We present a hybrid top-down bottom-up neural model for solving MWPs. The solving process is as
follows. The bottom-up network is inspired by [15] and is first trained to generate candidate trees and
subtrees of the solution. When training the top-down tree decoder, the bottom-up network is first
run to produce candidate solution trees and its subtrees. After each subgoal is calculated, a query
network queries all the candidate trees and picks the tree that best solves this goal, if any. Finally,
after that subgoal is realized, the subtree is replaced with the chosen candidate tree.

4.1 Bottom-Up Network

Like in [15] the bottom-up network is a DAG-LSTM structured network that works as below.

4.1.1 Problem Encoder

We use a 2 Layer Bidirectional GRU model as the problem encoder as in [1]. If P = w1w2 . . . wn is
the input problem text, we first append all potential constants (i.e. 1, 2, 3.14, 0.5) that might be used
in the solution expression to the end of the problem text. The augmented input problem text is thus
P = w1w2 . . . wnc1c2 . . . ck if there are k constants. We embed each token wi in the text by looking
up an embedding matrix Membed to produce embedding wi. The encoder takes in each the sequence
w1,w2, . . .wn+k and produces a forward direction sequence of hidden states

−→
h1,
−→
h2, . . . ,

−−−→
hn+k and

a backward direction sequence of hidden states
←−
h1,
←−
h2, . . . ,

←−−−
hn+k, where the forward and backward

directions are calculated according to
−→
ht = GRU(

−−→
ht−1,wt)

←−
ht = GRU(

←−−
ht+1,wt)

The final hidden state at any time t is thus given by

ht =
−→
ht +

←−
ht

4.1.2 Bottom-Up Decoder

Once the problem and relevant quantities are encoded, the decoder will create a new tree using
existing candidates and operations, and determine whether the new tree should be added to the list
of candidates. More specifically, if Cs is the current list of candidates, and i, j ∈ Cs, and o is an
operation, then (o, i, j) is a potential tree.

For a new tree (o, i, j), the decoder computes a hidden representation h based on the hidden represen-
tations hi, hj . This is done using the corresponding DAG-LSTM cell of operation o, or DAG-LSTMo.
DAG-LSTM cells are discussed in section 4.1.3. We use this hidden representation and calculate the
attention c over the encoded input H = h1,h2, . . . ,hn+k, according to the self-attention mechanism
introduced in BERT [20]. More specifically, the query vector q = W qh, the key vector is K = W kH ,
and the value vector is V = W vH . We use the attention output c, and the hidden representation of
the new tree h to calculate the probability of being positive, where positive candidates are added to
Cs. Concretely, the probability p that (o, i, j) is positive is given by

h = DAG-LSTMo(hi, hj)

c = Attention(h,H)

p = Softmax(Linear([h; c]))

We add the candidate (o, i, j) to Cs if p > 0.9.
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4.1.3 DAG-LSTM Cells

DAG-LSTM cells are introduced in [15] and are designed to encode trees in a way that captures the
commutativity of the operation. The idea is that trees representing a+ b and b+ a should have the
same representation since they represent the same value, but trees representing a− b and b− a should
be different. Previous Seq2Seq models attempt to solve this problem by rearranging values, however,
when a, b are subtrees, this problem becomes difficult with such a heuristic. For this reason, we adopt
the same strategy as [15] and encode new trees with these cells. Next, we introduce the two types of
DAG-LSTM cells.

DAG-LSTM for Commutative Operations: For new trees (o, l, r) where o is a commutative
operation (i.e × or +) the hidden representation h for this tree should be the same for (o, l, r) and
(o, r, l). Let hl, hr be the hidden representations for trees l, r respectively. We set h̃ = hl + hr. Then,
h can be computed according to

i = σ(W ih̃+ U ix+ bi)

fk = σ(W fhk + Ufx+ bf ) for k = l, r

o = σ(W oh̃+ Uox+ bo)

ĉ = tanhW ch̃+ U cx+ bc

c = fl ⊙ cl + fr ⊙ cr + i⊙ ĉ

h = tanh c⊙ o

Where cl, cr are the cell states c of the l tree and r tree respectively, and x is the embedding of o,
found by looking up an embedding matrix Mop.

DAG-LSTM for Non-Commutative Operations: For new trees (o, l, r) where o is not a commuta-
tive operation (i.e / or −) the hidden representation h for this tree should be the different for (o, l, r)
and (o, r, l). Set h̃ = [hl;hr]. Then, h can be computed according to

i = σ(W ih̃+ U ix+ bi)

fk = σ(W f h̃+ Ufx+ bf ) for k = l, r

o = σ(W oh̃+ Uox+ bo)

ĉ = tanhW ch̃+ U cx+ bc

c = fl ⊙ cl + fr ⊙ cr + i⊙ ĉ

h = tanh c⊙ o

4.1.4 Training Procedure

Let O denote the list of operations and Cs be the list of candidate trees. During training, we initialise
Cs as the list of constants C and the numbers in the problem NP , or Cs = C∪NP . We then construct
every possible candidate tree (o, l, r) for l, r ∈ Cs and o ∈ O as well as calculate p, the probability
it is positive. If it is positive, we add it to Cs, or Cs = Cs ∪ (o, l, r). This process terminates if the
length of the new tree (o, l, r) is greater than the maximum length of any tree in the dataset, or no
tree (o, l, r) is positive. Given a dataset D = {(Pi, Ti)|1 ≤ i ≤ n}, we define the loss function as a
variant of binary cross entropy:

L =
∑
s∈D

∑
c∈Cs or

c∈Subtree(s)

yc log(pc) + (1− yc) log(1− pc)

where s = (P, T ) is a data sample with problem text P , and solution tree T , Subtree(s) refers to all
subtrees of the solution tree T , and yc is the ground truth label of tree c. More specifically, yc = 1 if
c is a subtree of T , and 0 otherwise. Since we are using the bottom-up network to generate candidate
subtrees, we encourage the network to generate more trees than less, and penalize false negatives
more than false positives. We compute the accuracy of this network as #correct subtrees in Cs

#total subtrees in T .
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Alternative loss functions were considered where only c ∈ Cs trees were factored into the loss.
However, this resulted in the loss being 0 if no trees are ever added to Cs, so there was little incentive
for the network to assign trees a p > 0.

4.2 Top-Down Network

The top-down network is identical to that of GTS, with the addition of the query network that
determines if a subtree should be replaced in the solution.

4.2.1 Problem Encoder

We use the same encoder structure detailed in [15] with one slight difference. In the top-down
network, we no longer append the constants to the end of the problem statement, and instead, encode
the problem statement as is.

We briefly experimented with other encoders and embeddings. Mainly, we experimented with more
pre-trained BERT embeddings for Chinese characters. Additionally, we tried using an group attention
based encoder detailed in [21]. Such an encoder uses four attention mechanisms to capture context in
a MWP that may not be ordered sequentially and thus would not be picked up by a bidirectional GRU.
It uses: 1) global attention among all tokens in the MWP, 2) local attention between a token and
its neighboring words, 3) quantity attention between all numerical values, and 4) question attention
between the question and the numerical values. Overall, we found these modifications failed to beat
the baseline. The results are detailed in 5.

4.2.2 Top-Down Decoder

We use the same tree decoder as presented in GTS. Given a predicted token ŷ, during subgoal
generation ql and qr, these two vectors are also passed into the query network. For details of the
top-down decoder, refer to [1].

4.2.3 Query Network

We present a novel query network that determines if, given an embedding of a subtree, it achieves
a specified subgoal generated by the top-down decoder. Concretely, we first generate all candidate
subtrees using the bottom-up network described in 4.1. We then encode the subtree (o, l, r) using the
corresponding DAG-LSTM of type o, and the hidden representations of the left and right subtrees
hl, hr respectively. Then, for a given left and right subgoal ql,qr, we calculate

h = DAG-LSTMo(hl, hr)

ck = W c tanhWh[qk;h] + bh k ∈ (l, r)

ak = ReLU(W ack + ba) k ∈ (l, r)

pk = Softmax(Linear(ak)) k ∈ (l, r)

where pl, pr denote the probability that the subtree h satsfies the left subgoal and right subgoal ql

and qr respectively.

Note that each subgoal qk queries all the subtree embeddings and finds, if any, the subtree that
satisfies the subgoal with the highest probability.

During training, the top-down decoder and query network and trained in conjunction, although the
query network does not factor into the top-down decoding process, and only factors in during test-time
evaluation.

4.2.4 Training Procedure

The overall loss function for the top-down network is comprised of the GTS loss function, and the
query network loss function. Formally, this is

L = LGTS + Lquery

5



(a) (b) (c)

Figure 2: (a) Test subtree accuracy per epoch of bottom-up network; (b) Test value accuracy per
epoch of GTS, hybrid model, and top-down with real subtrees; (c) Test equation accuracy per epoch
of the 3 models above.

The GTS loss function is simply to minimize the negative log-likelihood on the dataset D =
{(Pi, Ti)|1 ≤ i ≤ n} or

LGTS =
∑

P,T∈D

− log(T |P )

The query loss function is to minimize the binary cross entropy between each subgoal and every
subtree in the solution tree T . More specifically,

Lquery =
∑

P,T∈D

1

|Subtree(T )|
∑

ql,qr∈T

∑
c∈Subtree(T )

yc log pc + (1− yc) log(1− pc)

where yc = 1 if c is the subtree in T that realizes goal qk for some k ∈ (l, r), and pc is calculated
according to the query network described in 4.2.3. During training, we compute all possible subtrees
directly using solution tree T , instead of generating them from the bottom-up network.

In addition to this approach, we also considered an end-to-end training procedure, where the bottom-
up and top-down networks are trained in conjunction. However, preliminary experiments with this
setup failed to learn anything. We believe there was too much variance in the network, and the bottom
up network wasn’t learning to generate subtrees, and as a result the top-down network wasn’t learning
to score them properly in the query network, and as a result the loss was always high.

4.3 Training and Evaluation of Hybrid Network

When training the hybrid network, we train the bottom-up network and top down network in parallel.
This is possible since the query network takes in solution trees and subtrees directly from the solution
expression T , instead of generating them using the bottom-up network.

During evaluation, the bottom-up network first generates candidate solution trees and subtrees and
passes them to the top down network. During the top-down decoding process, each time a subgoal is
generated, it queries each candidate subtree. If the query network returns a replacement probability
pr > 0.9, the corresponding candidate subtree is saved. Once the top-down network finishes decoding
and produces solution tree T ′, all the found replacement subtrees then replace the corresponding
subtree in T ′ to generate a final solution tree T .

5 Results

We first train the bottom-up network on Math23k using 5-fold cross validation. We train for 80 epochs,
and use a batch size of 8. In each epoch, the dataset is first shuffled and then cut into mini-batches. We
use a learning rate of 0.001 that is halved every 20 epochs, and optimize using Adam. Additionally,
we set the dropout probability to 0.5. The resulting loss and accuracy plots are shown below.
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We evaluate the performance on the test set after every 5 training epochs for the first 75 epochs, then
after each epoch for the last 5. The results can be found in Figure 2(a). From this we, see that the
bottom-up network finds the subtrees fairly well, with a final test accuracy of 79.39%.

During the pass through the test data, we also collected data on the average number of trees for each
depth. The average number of each tree added to the candidate trees during the final test is shown in
Table 2. We see that the network is extremely capable at finding trees below length 5, and there is a

Tree Length Average Count

3 41.24
4 23.62
5 7.06
6 4.33
7 0.76
8 0.31
9 0.02

10 0.0056
Table 2: Average number of trees per length present in candidate set Cs in test data.

steep drop off in the network’s ability to find these trees. This is likely due to the high variance, as
finding trees of length 5 is dependent on finding the correct subtrees of length 4, which is dependent
on finding the correct subtrees of length 3. This makes finding higher length subtrees a hard task.
Furthermore, another reason would be that the average solution tree length was only 6.8, meaning
there are only a few samples with subtrees of length > 5, so the network doesn’t become as adept at
finding these as it does trees of lower length.

We then combined the top down and bottom up network into the hybrid network and evaluated the
performance of this compared to the baseline GTS model. We train both networks for 80 epochs
using 5-fold cross validation on the Math23k dataset. As in the experiments with the bottom-up
network, we use a batch size of 64 a learning rate of 0.001. We evaluate the performance on the test
set every 5 epochs. We use these parameters as they are the same as the baseline, and this ensures
an accurate comparison between the methods. We also compare the performance on the test set of
both these models to our top down model with the subtrees from the solution being directly fed in as
input, instead of being generated from the bottom up network. The test value accuracy per epoch can
be seen in Figure 2(b), and the test equation accuracy can be seen in Figure 2(c). For reference, the
final test accuracy, averaged across all 5 folds, for the 3 models are shown in Table 3. Although the

Model Avg Test Value Accuracy (%) Avg Test Equation Accuracy (%)

GTS 74.00 62.90
Hybrid (ours) 71.81 61.90

Top-down with real subtrees 75.86 64.20
Table 3: Average final test equation and value accuracies for each model.

hybrid model didn’t outperform the baseline, the top down model with real subtrees outperformed the
baseline on both equation and value accuracy after 80 epochs. The performance of the hybrid model
can therefore most likely be explained by the bottom-up network not generating enough accurate
candidate subtrees for the top-down network to replace.

Our experiments changing the encoder generally failed to show improvements over the GTS baseline.
In fact, we generally saw degradations in test accuracy. In the first experiment, we replaced the basic
GTS embedding with a Chinese-character based BERT embedding. Then, we replaced the encoder
with a group-attention based encoder. Finally, we tried combining the BERT embedding with the
group-attention based encoder. We trained these networks with the same settings as the experiments
above. The final test accuracy for the three models is shown in Table 4. The worse performance is
likely due to overfitting in the encoder.
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Model Avg Test Value Accuracy (%) Avg Test Equation Accuracy (%)

GTS 74.00 62.90
GTS-BERT 70.40 60.11

GTS with Attention 72.51 61.63
GTS-BERT with Attention 71.00 60.90

Table 4: Average final test equation and value accuracies for each model.

6 Discussion and Analysis

Overall the hybrid model provided interesting and promising results. With the hybrid bottom-
up and top-down approach, both the test value and equation accuracy came close to the baseline
model. However, when generating the subtrees using the real solution tree, the top down network
outperformed GTS and the hybrid model on both test equation and value accuracy. This points to the
bottom-up network being the limiting factor in answer generation of the hybrid network. Based on
the average number of trees being generated in Table 2, the bottom-up network is producing too many
candidate trees that are embedded close together, meaning the query network is struggling to score
each tree accurately. Additionally, when training the top-down model, the query network impacts the
embeddings of the subgoals. When evaluating the top-down network without replacements (this is
just vanilla GTS), the model fails to learn to solve the problems, and could not reach a test accuracy
of 10% even after 80 epochs. It could be interesting to first train GTS, such that the embeddings of
the goal are fixed and helpful in the top-down decoding process, and then train the query network,
instead of training them in parallel. More investigation is also required on the effectiveness of the
query network. The architecture of the network was primarily inspired by the score function in GTS.

On the encoder side, switching the embedding failed to produce better results. The reason could be
that the BERT embeddings for Chinese characters were trained on individual characters, whereas
in the preprocessing of the Math23k dataset, the characters are separated into tokens, sometimes
containing multiple characters, and these are embedded separately. This mean the embedding matrix
could produce a better representation of the tokens, compared to pretrained BERT embeddings. The
GroupATT encoder also introduces a lot more parameters as it contains several Multihead Attention
layers. This introduces a high amount of variance, and made training unstable, which is why it failed
to perform as well as the more simple bidirectional GRU encoder.

Lastly, there are inherent limitations to the Math23k dataset. Occasionally, converting the solution
expression to a solution tree resulted in an unknwon token (UNK) in the solution tree. This meant
that even if the model was learning to output the correct token, the solution doesn’t have the correct
reference token, which inhibits the ability of the model to fully learn. Moving forward, a better way
of handling UNK tokens needs to be used, rather than comparing the model output with itself.

To conclude, the hybrid model produced interesting results and had similar test equation and value
accuracy to GTS. When using the real subtrees instead of ones generated by the bottom-up network,
the model outperformed GTS on both test equation and value accuracy on Math23k. Potential
extensions include a more rigorous handling of UNK tokens, a training approach that trains the query
network separately, and improvements to the bottom-up network such that it is more precise, and has
less false positives.
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