Jeffrey Tsaw

Contact

▼ jtsaw@andrew.cmu.edu

(415)-815-7698

jeffreytsaw.github.io

Coursework

10-703 - Deep Reinforcement Learning*

18-898 – Graph Signal Processing*

18-743 – Neuromorphic Computer Architecture

10-707 – Adv Deep Learning

15-750 – Graduate Algorithms

18-447 – Computer Architecture Credit Suisse Securities

33-234 – Quantum Physics

10-701 – Intro to ML (PhD)

ELEC0024 - Digital Signal Processing and Design (UCL)

18-349 – Introduction to **Embedded Systems**

Technical Skills

Languages

Python \blacksquare C \blacksquare SystemVerilog ■ ARM ■ x86-64 ■ MATLAB

Tools

PyTorch ■ TensorFlow ■ GDB ■ Linux ■ FPGA

Activities

CMU Club Tennis Team

Aug 2019 – Present

• Quarterfinalist at 2019 **USTA** Regionals

London Dragons Varsity Hockey Team

Jan 2020 – Jul 2020

• BUIHA Division 1 South Champions

CMU Club Hockey Team

Aug 2017 – Present

Asian Student Association

Aug 2017 - Present

Interests

Sport/Outdoor Climbing Hockey Tennis College Basketball Football Math **Jazz Music**

Education

Carnegie Mellon University

Pittsburgh P.A

M.S, B.S (with Honors) Electrical & Computer Engineering

- GPA M.S: 3.95/4.00 | B.S: 3.82/4.00
- HKN and TBP Honour Societies

Experience

Apple Inc.

Hardware Engineering Intern | Cupertino, CA (virtual) | Sep'21 – Dec '21

- Worked on GPU Memory Verification team
- Integrated idle checks and developed coverage for 5 modules within GPU routing block
- Developed novel strategy to hit previously un-hit coverage points using Xceligen ML tool to improve coverage of a coverpoint by over 10%

Technology Analyst Intern | New York, NY (virtual) | Jul '20 – Aug '20

- Designed and developed a 2-stage pipelined model to extract bond tickers, ISINs, and CUSIPs from Bloomberg chat data in an Agile environment
- Trained and tuned an NER model in spaCy to recognise bond information and non-bond entities with over 98% precision and recall
- Successfully extracted over 90,000 bond tickers

Carnegie Mellon University

- 10-701: Intro to ML (PhD) TA | Pittsburgh, PA | Jan '21 May '21
- 18-349: Intro to Embedded Systems TA | Pittsburgh, PA | Aug '20 Jan '21

Projects

HighMMT: High Modality Multi-Task Learning

MultiComp Lab CMU

- Developed modality heterogeneity metric to facilitate parameter of sharing during training of multitask Transformer model
- Developed a modality heterogeneity aware parameter sharing framework to achieve **SOTA** across 4 tasks with a 10% reduction in parameters
- Submitted to TMLR 2022

AutoVöt: An Autonomous RC Vehicle Convoy

Partner Capstone Project for 18-500 | Jan '21 – May '21

- Developed a convoy of RC vehicles capable of autonomously navigating an obstacle course through V2V communication, where only the lead vehicle has perception capabilities
- 1st Runner Up out of 30+ 18-500 Capstone projects in Spring 2021

Hybrid Model for Solving Math Word Problems

Project for 10-707 | Mar '22 – May '22

- Combined a bottom-up DAG extraction model with top-down tree decoder model into a novel hybrid neural model for solving math word problems
- Achieved 75% answer accuracy, beating baseline SOTA of 74%

RISC-V Processor

Project for 18-447 | Jan '21 – May '21

- Designed and implemented a synthesizable pipelined superscalar out of order processor on RV32I ISA in SystemVerilog, averaging 280 MIPS on prescribed benchmarks.
- Achieved 1st quartile performance in Spring 2021 on prescribed benchmarks

Recurrent GANs for Music Generation

Project for 10-701 | Aug '20 – Dec '20

- Extended a baseline recurrent BiLSTM GAN for music generation with a novel architecture containing an input mapping network, convolution and attention layers, and an FFT component
- Improved polyphony, unique tone variance, and complexity over baseline to more closely resemble actual classical music.

University College London

London, UK | Study Abroad, Spring 2020 Affiliate Electrical and Electronic Engineering

RISC-V Processor

Project for 18-447 | Jan '21 – May '21

- Designed and implemented a synthesizable pipelined superscalar out of order processor on RV32I ISA in SystemVerilog, averaging 280 MIPS on prescribed benchmarks.
- Achieved 1st quartile performance in Spring 2021

The Empathetic Jukebox

Final Project for 15-112 Intro to CS | Apr '18 - May '18

- Created a music player that plays songs from user's playlists on Spotify based on user's emotions using Python, OpenCV, and BeautifulSoup
- Integrated machine learning in OpenCV to detect facial emotions, as well as Spotify API with web scraping to play the songs from YouTube

Real Time Operating System

Solo project for 18-349 | Nov '19

• Designed and developed a real-time operating system using a rate monotonic scheduling algorithm for an ARM Cortex M4 processor on an STM32 microcontroller, capable of handling thread creation, deletion, and context switching, with PCP for mutexes

15-213: Computer Systems TA | Pittsburgh, PA | May '19 – Aug '19

• Taught fundamental computer systems concepts including x86-64 ASM, virtual memory, and threading to 30+ students

1. Serial Engine Interface- USB 2.0

Partner Project for 18-341 | Nov '19

• Implemented IN, OUT, DATA0, ACK, NAK packets and a control FSM to simulate read, write transactions with a thumb drive as part of the USB 2.0 standard

Resume Job Compatibility Algorithm

Credit Suisse Coding Challenge | May '19

- Using Python and spaCy, developed and trained NER and NLP models to extract key details from resumes
- Developed an algorithm to use details to find best candidate given a job description
- 1st place at Credit Suisse Coding Challenge

SI & EXCEL Leader | Pittsburgh, PA | Aug '18 – Aug '20

• Designed and lead supplementary classes for Multivariable Calculus, Physics II, and Physics I for multiple groups of 10-100 students

18-349: Embedded Systems TA | Pittsburgh, PA | Aug '20 – Dec '20

• Taught real-time embedded systems concepts in ARM Thumbv2 including serial protocols (I2C, SPI, UART), timers/interrupts, threading, and scheduling algorithms.